F. Baccelli

UT Austin & INRIA

Information and Communication Systems, Montevideo, March. 17, 2015

- Dense Poisson Cellular Networks and their Backhaul
- Dense Poisson Device2Device Networks
- **Dense Poisson Multiuser Information Theory Networks**

1

AR NETWORKS ⊢

3

Base stations (BSs) arranged according to an homogeneous Poisson point process of intensity λ in \mathbb{R}^2

Users

- located according to some independent stationary point process
- each user is served with the closest BS \rightarrow **Poisson Voronoi Cells**

Stochastic Geometry & Wireless Networks Densification

SHANNON RATE IN POISSON-VORONOI NETWORKS IEEE RICE

- Focus: Downlink
- SINR experienced by tagged user:
 - Signal: stems from closest BS
 - Interference: stems from BSs outside Voronoi cell of tagged user
 - Thermal noise: with power ${\cal N}$
- Shannon rate offered to tagged user:

 $\mathbf{B}\log(\mathbf{1}+\mathbf{SINR})$

Question: Law of the Shannon rate offered to tagged user

Stochastic Geometry & Wireless Networks Densification

F. Baccelli

4

PROPAGATION ASSUMPTIONS

■ **Power law path loss model:** at distance *r*

 $\mathbf{l}(\mathbf{r}) = \mathbf{r}^{\beta}$

with $\beta > 2$ the path loss exponent

5

• Other classical path loss model can be treated as well.

FADING ASSUMPTIONS

Simplest setting:

6

- Fading on the downlink from BS to tagged user: Rayleigh with representative S with mean $\frac{1}{u}$ with $\frac{1}{u} = P_{tx}$
- Fading from other BSs:
 i.i.d. with representative F with general distribution.
- More general assumptions can be handled as well

 I_r : interference power given the closest BS is at distance r

Stochastic Geometry & Wireless Networks Densification

MULTI-TIER VARIANT- IEEE ABRAHAM

- Network Elements
 - 1. Macro BS
 - 2. Pico BS

14

- 3. Femto BS
- **BS of type** i with power P_i with

 $P_1 > P_2 > P_3$

Closed form expression for Probability of coverage in CBR and Shannon rate distribution

HIERARCHICAL POISSON–VORONOI MODEL

- $\Phi_i, i = 1, ..., N$ point processes describing positions of BS's of type i
- Poisson Model: Φ_i are independent homogeneous Poisson point processes of intensity λ_i (λ_i > λ_{i+1}).
- Hierarchical connections the *i*-th level stations in a cell of a (*i* + 1)-st level station are directly connected to the latter.

Stochastic Geometry & Wireless Networks Densification

19

21

ANALYTICAL RESULTS

Additive functionals

$$\mathbb{E}_{i+1}^0\left(\sum_{\mathbf{x_j}\in \Phi_i} \mathbf{f}(\mathbf{x_j})\mathbf{1}\{\mathbf{x_j}\in \mathcal{C}_{i+1}^0\}\right)$$

for $f:\mathbb{R}^2 o \mathbb{R}_+$, where \mathcal{C}^0_{i+1} is the cell of $0\in \Phi_{i+1}$

Examples:

- \mathcal{N}_{i} number of type *i* BS's in \mathcal{C}_{i+1}^{0} (f(x) = 1);

- $\mathcal{L}_{i}(\mathbf{a})$ cost of all connections in C_{i+1}^{0} , if the cost for connecting a type i BS at x to its type i + 1 BS at 0 is

$$\mathbf{f}(\mathbf{x}) = |\mathbf{x}|^{\mathbf{a}}, \ \mathbf{a} \geq \mathbf{1}$$

Explicit integral expressions for many additive functionals.

INTERFERENCE AS POISSON SHOT NOISE

- $\Phi = {X_i}$: transmitters locations: Poisson with intensity λ
- $e_i \in \{0, 1\}$: right for i to access medium: i.i.d. with $P(e_i = 1) = p$
- **F**_{i,y} $\in \mathbb{R}_+$: fading from transmitter *i* to location *y*: Rayleigh μ
- $I_{\Phi^e}(y) = \sum_{i \neq 0} \frac{e_i F_{i,y}}{|y X_i|^{\beta}}$: 'filtered' interference at y,
- Node at 0 active in slot can be received by that located at y iff

$$SINR(\mathbf{y}) = \frac{\mathbf{F}_{\mathbf{0},\mathbf{y}}/|\mathbf{y}|^{\beta}}{\mathbf{N} + \mathbf{I}_{\phi^{\mathbf{e}}}(\mathbf{y})} \ge \mathbf{T} \quad [Outage]$$

Stochastic Geometry & Wireless Networks Densification

24

