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STRUCTURE OF THE TALK

DensePoisson Cellular Networksand their Backhaul

DensePoisson Device2Device Networks

DensePoisson Multiuser Information Theory Networks
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VORONOI TESSELLATION

Voronoi tessellation generated by a
random sample of points.

Φ set of points of the Euclidean
plane.

The Voronoi cell Cxi(Φ) of atom
xi of Φ is the set of all locations of
R

2 that are closer to this atomxi

than to any other atom ofΦ.

Each Voronoi cell is a convex
polyhedron, but it may be un-
bounded.
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POISSON-VORONOI CELLULAR NETWORKS

- Cells

- Connections

- Users

- Stations

0

C 0

Base stations(BSs) arranged
according to an homogeneous
Poisson point process of inten-
sity λ in R

2

Users

– located according to some
independent stationary
point process

– each user is served with the
closest BS→
Poisson Voronoi Cells
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SHANNON RATE IN POISSON-VORONOI NETWORKS
IEEE RICE

Focus: Downlink

SINR experienced by tagged user:

– Signal: stems from closest BS

– Interference: stems from BSs outside Voronoi cell of tagged user

– Thermal noise: with power N

Shannon rate offered to tagged user:

B log(1 + SINR)

Question: Law of the Shannon rate offered to tagged user
Stochastic Geometry & Wireless Networks Densification
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PROPAGATION ASSUMPTIONS

Power law path loss model: at distancer

l(r) = rβ

with β > 2 the path loss exponent

Other classical path loss model can be treated as well.
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FADING ASSUMPTIONS

Simplest setting:

– Fading on the downlink from BS to tagged user:
Rayleigh with representativeS with mean 1

µ
with 1

µ
= Ptx

– Fading from other BSs:
i.i.d. with representativeF with general distribution.

More general assumptions can be handled as well
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COVERAGE/SHANNON RATE/SPECTRAL
EFFICIENCY

Coverage probability seen from a typical user

pc(T, λ, β) = P0
u[SINR > T] = P0

u[Shannon rate > B log(1 +T)]

Equivalent to

– Probability that a randomly chosen user achieves target SINR T

– Average fraction of users who at any time achieve SINRT

– Average fraction of the network area in “T -coverage” at any time
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MAIN RESULT

Theorem

pc(T, λ, β) = πλ

∞
∫

0

e−πλvκ(T,β)−µTNvβ/2dv

where

κ(T, β) =
2(µT)

2
β

β
E

[

F
2
β (Γ(−2/β, µTF)− Γ(−2/β))

]

and the expectation is with respect to the fadingF and

Γ(w, z) =

∞
∫

t=z

exp(−t)tw−1dt, Γ(w) =

∞
∫

t=0

exp(−t)tw−1dt = Γ(w,0).
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PROOF

Step 1: Poisson-Voronoi

P(Φ(B(0, r)) = 0) = e−λπr2

pc(T, λ, β) = P[SINR > T]

=

∫

r>0

P[SINR > T]fr(r)dr

=

∫

r>0

P

[

Sr−β

N + Ir
> T

]

e−πλr22πλrdr

=

∫

r>0

e−πλr2P[S > Trβ(N + Ir)]2πλrdr

Ir: interference power given the closest BS is at distancer
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PROOF (continued)

Step 2: Rayleigh. SinceS ∼ exp(µ),

P(S > Trβ(N + Ir)) = E[exp(−µTrβ(N + Ir)] = e−µTrβNLIr(µTr
β)

with LIr(s) the Laplace transform of the interference.
Thus

pc(T, λ, β) =

∫

r>0

e−πλr2e−µTrβNLIr(µTr
β)2πλrdr
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PROOF (continued)

Step 3: Interference as Poisson Shot Noise Field

LIr(s) = exp



−2πλ

∞
∫

r

(

1− LF

(

sv−β
))

vdv





with LF the Laplace Transform of the general fading.

LIr(µTr
β) = exp

(

λπr2 − 2πλ(µT)
2
βr2

β
Z

)

with

Z =

∞
∫

0

g
2
β [Γ(−2/β, µTg)− Γ(−2/β)] f(g)dg

with f(g) the PDF ofF.
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SPECIAL CASES

Special Case: RayleighF , β = 4:

pc(T, λ,4) =
π

3
2λ

√

T/SNR
exp

(

(λπν(T))2

4T/SNR

)

Q

(

λπν(T)
√

2T/SNR

)

where

ν(T) = 1 +
√
T(π/2− arctan(1/

√
T))

SNR =
1

µN
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SPECIAL CASES (continued)

Interference Limited, Rayleigh F , β = 4:

pc(T, λ,4) =
1

1 +
√
T(π/2− arctan(1/

√
T))

If the user and BS densities scale the same way,

positive spectral efficiency for all densities !
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MULTI-TIER VARIANT– IEEE ABRAHAM

Network Elements

1. Macro BS

2. Pico BS

3. Femto BS

BS of typei with power Pi with

P1 > P2 > P3

Closed form expression for
Probability of coveragein CBR
and Shannon ratedistribution
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COVERAGE

Tier i:

– Poisson point processΦi of intensity λi in R
2

– Transmit power Pi, SINR Target Ti

Power law path loss, Rayleigh fading

Coverage of the tagged customer:

max
i

max
x∈Φi

SINR(x → 0) > Ti
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SPECTRAL EFFICIENCY

Theorem
AssumeTi > 1 for all i. Then

pc =
∑

i

λi

∫

R2

e
−
(

Ti
Pi

)
2
βC(β)||xi||2

(

∑

m λm(Pm)
2
β

)

e
−TiN

Pi
||xi||βdxi

with

C(β) =
2π2

sin(2πβ )β
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SPECTRAL EFFICIENCY (continued)

Interference limited special case

pc =
π

C(β)

∑

i λi

(

Pi
Ti

)2
β

∑

i λi(Pi)
2
β

If the user and all BS densities scale the same way,

positive spectral efficiency for all densities !
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BACKHAUL INFRASTRUCTURE COST

No free lunch: densification leads to explosion of infrastructure cost

– What is the backhaul architecture that minimizes connection costs
per unit of space?

– What is the optimum number of levels?

– What should be the relative intensities of the BS’s of each level?

Example of SG Analysis: Hierarchical architectures
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HIERARCHICAL POISSON–VORONOI MODEL

Φi, i = 1, . . . ,N point processes describing positions of BS’s of typei

Poisson Model: Φi are independent homogeneous Poisson point pro-
cesses of intensityλi (λi > λi+1).

Hierarchical connectionsthe i-th level stations in a cell of a(i + 1)-st
level station are directly connected to the latter.
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HIERARCHICAL POISSON–VORONOI MODEL (continued)
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ANALYTICAL RESULTS

Additive functionals

E
0
i+1





∑

xj∈Φi

f(xj)1{xj ∈ C0
i+1}





for f : R2 → R+, whereC0
i+1 is the cell of0 ∈ Φi+1

Examples:

– Ni number of type i BS’s in C0
i+1 (f(x) = 1);

– Li(a) cost of all connections inC0
i+1, if the cost for connecting a type

i BS atx to its type i + 1 BS at 0 is

f(x) = |x|a, a ≥ 1

Explicit integral expressions for many additive functionals.
Stochastic Geometry & Wireless Networks Densification
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DEVICE TO DEVICE NETWORKS

Aloha, SG analysis, dense Aloha case

CSMA, SG analysis, dense CSMA caseQUALCOM FLASHLINK
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ALOHA ON A POISSON DIPOLE D2D NETWORK

r
Receiver

Transmitter
     e=1

Silent Node
      e=0

Dipoles (transmitter,receiver)
Here, fixed lengthr, uniform

direction dipoles.

– Nodes form aPoisson p.p.in
the Euclidean plane

– Each node usesAloha

– Transm. success depends on
SINR at the receiver
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INTERFERENCE AS POISSON SHOT NOISE

Φ = {Xi}: transmitters locations: Poissonwith intensity λ

ei ∈ {0, 1}: right for i to access medium: i.i.d. withP(ei = 1) = p

Fi,y ∈ R+: fading from transmitter i to location y: Rayleigh µ

IΦe(y) =
∑

i6=0

eiFi,y

|y−Xi|β
: ’filtered’ interference at y,

Node at0 active in slot can be received by that located aty iff

SINR(y) =
F0,y/|y|β
N + Iφe(y)

≥ T [Outage]
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COVERAGE/SPECTRAL EFFICIENCY

The probability of coverage at distancer is

pc(r) = P(F ≥ Trβ(N + IΦe)) = LN

(

µTrβ
)

LIe
(

µTrβ
)

= LN

(

µTrβ
)

exp







−2πλp

∞
∫

0

u

1 + uβ/(Trβ)
du







with LA the Laplace transform of the positive random variableA.

Example: If N ≡ 0, then

pc(r) = exp(−λpr2T2/βC(β)), C(β) =
2π2

β sin(2π/β)
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POISSON D2D NETWORK DENSIFICATION

Theoremα-stable white noise field limit
Whenλ tends to infinity, the joint law of the rescaled interferencefield

(

I(x1)

(λp)
β
2

, . . . ,
I(xk)

(λp)
β
2

)

converges in distribution to (ξ1, . . . , ξk), an i.i.d. vector with

E[e−tξ1] = exp
(

−C(β)E[F
2
β ]t

2
β
)

Corollary For a Poisson field of interferers with densityλ, the scale
at which the Shannon rate decreases for a link of length 1 isλ−β

2
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MULTI-USER INFORMATION THEORY

MIMO Mitigation of Interference under densification

MAC Mitigation of Interference under densification
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MIMO MITIGATION

Poisson Dipole model - SIMO with local CSIR

D2D transmitter as above

D2D receiver

– hasA antennas

– knowsCSIR of direct link

– usesMRC maximum ratio combining with CSIR
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SIMO SPECTRAL EFFICIENCY & SCALING LAW

Theorem In the interference limited regime, the mean Shannon rate
of the typical user is

β

2 ln2

A
∑

n=1

(

A

n

)

∞
∫

0

e−u

u

(

sinc
(

2
β

)

u

2πr2

)nβ/2

(

1 +

(

sinc
(

2
β

)

u

2πr2

)β/2
)A

du

Corollary Assume thatA = cλγ for some c > 0 and that there is
no diversity limitation, then in the interference limited r egime, when
λ → ∞, the spectral efficiency of the typical user scales like

log(1 + λγ−β
2)

.
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MAC SPECTRAL EFFICIENCY & SCALING LAW

r0

Weak Interferers

Strong Interferers

Receiver 0

Transmitter 0

The Multiple Access Channel
”Multipole” : the co–transmitters

in the Multiple Access Channel are
the strong interferers.

The capacity regionof the Multi-
ple Access Channel is known

This capacity is achieved bysi-
multaneous decoding

The ”channel order” k is a free
parameter: SIM (k)
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RESULTS

Mean Shannon rate of typical MAC for given order

Scaling law: for optimal MAC cardinality (order increasing linearly
with λ), the mean Shannon rate is order 1 whenλ → ∞.
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CONCLUSION

SG provides avertical integrator for

– wireless networking

– information theory, including multi-user

– network architectures

– densification

– network economics

SG is already used by manufacturers and operators

SG has thepotential to guide strategic decisionsin 5G design
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