# Challenges in Cyber-physical Systems

#### P. R. Kumar

Dept. of Electrical and Computer Engineering Texas A&M University

Email: <a href="mailto:prk.tamu@gmail.com">prk.tamu@gmail.com</a> Web: http://cesg.tamu.edu/faculty/p-r-kumar/ Information and Communication Systems and their application to vertical sectors, Montevideo and Punta del Este, Uruguay, March 16-18, 2015

## Push: The technological enablers of CPS



## From real-time and hybrid systems



## The technological enablers of CPS



## The third generation of control systems

- First generation: Analog Control
  - Technology: Feedback amplifiers
  - Theory: Frequency domain analysis Evans, Nyquist, Bode
- Second generation: Digital Control
  - Technology: Digital computers
  - Theory: State-space design
  - Real-Time Scheduling
- Third generation: Networked Control
  - Embedded computers
  - Wireless and wireline networks
  - Software
- Platform revolution

#### Foundation of system theory

- Linear systems
- Nonlinear systems
- Estimation
- Optimal control
- System identification
- Adaptive control
- Robust control
- Discrete event systems
- Hybrid systems

#### Bouquet of books



## The technological enablers of CPS



### From communicating to sensing to acting



# Re-convergence of control, communication and computation



- "...the era of cyberspace and the Internet, with its emphasis on the computer as a communications device and as a vehicle for human interaction connects to a longer history of control systems that generated computers as networked communications devices."
  - D. Mindell in "Feedback, Control and Computing before Cybernetics," 2002
- ◆ 1950 2000 and continuing
  - Computation: ENIAC (1946), von Neumann (1944), Turing,...
  - Sensing and inference: Fisher, Wiener (1949),...
  - Actuation/Control: Bode, Kalman (1960),...
  - Communication: Shannon (1948), Nyquist,...
  - Signal Processing: FFT, Cooley-Tukey (1965),...



- 2000 onwards: Age of system building
  - Nodes that can communicate, control, compute
  - Larger grand re-unification of control, communication and computation
  - Pedagogical challenges: Knowledge of all these fields may be important
  - Undergraduate education? Graduate education?
  - Research challenges

# The Pull: System building era of 21<sup>st</sup> century

- Satisfying greater demand for infrastructure and services with resource constraints
  - Transportation systems
  - Energy systems
  - Medical systems
  - Water systems
- Ongoing resource-aware system building era of the 21<sup>st</sup> century
- CPS with sensing, communication, computation, actuation needs to play a key role



#### The world's largest professional association for the advancement of technology

#### Centennial special issue

A special 13 May centennial issue will be published as the thirteenth issue of 2012, which will review 19 key technologies from three perspectives: the past, the present, and prospects for developments in the future. Technical topics include:

- 1. cyber-physical systems;
- 2. electric power and energy engineering;
- 3. engineering education;
- 4. entertainment technologies;
- 5. hjardware/software co-design;
- 6. mass storage and data retrieval;
- 7. materials for electronics, photonics & energy storage;
- 8. medical devices and electronics;
- 9. neurotechnological systems: the brain-computer interfact
- 10. optics and photonics;
- 11. personal and home electronics;
- 12. privacy and cybersecurity;
- 13. radio spectrum access;
- 14. the search for life: SETI;
- 15. science and engineering beyond Moore's Law;
- 16. social implications of technology;
- 17. space exploration and science;
- 18. transportation and navigation technology;
- 19. wireless communications technology.



PAPER

1

2

5

6



#### May 2012: Special 13<sup>th</sup> issue

#### Cyber–Physical Systems: A Perspective at the Centennial

- 3 This paper surveys cyber-physical systems and the potential benefits of the
- 4 convergence of computing, communications, and control technologies
  - for developing next-generation engineered systems.
  - By KYOUNG-DAE KIM AND P. R. KUMAR, Fellow IEEE

## Platform and system building revolution

- Mechanisms
  - How to implement?
- Policies
  - What to implement?
- Confluence
  - Hybrid
    - Discrete and continuous
    - Protocol and algorithm

What performance guarantees can be provided?

- How can we guarantee that systems will perform correctly and be safe?
- Ultimate goals: Correctness, safety, reliability

### The importance of time

# Real-time scheduling: (Liu and Layland `73)



#### N tasks

- Jobs of Task *n* arrive with period  $\tau_n$
- Deadline is end of period
- Worst case execution time  $c_n$
- Rate monotone scheduling: Priority to smallest period task
- All deadlines met if  $\sum_{n=1}^{N} \frac{c_n}{\tau_n} \le N(2^{1/N} 1) \quad (\rightarrow \ln 2 = 0.69 \text{ as } N \rightarrow \infty)$

# What kind of guarantees can be provided over an unreliable medium like wireless?

#### In-Vehicle Networks



Wire harnesses are: Costly (>\$1000.00) Complex (>4,000 parts) Heavy (>40kg) Warranty issues (>65 IPTV)





Replace wires by an access point

### Packets with deadlines

#### With I-Hong Hou





#### Packets with Deadlines

A Framework for Real-Time Wireless Networks

I-Hong Hou P.R. Kumar

Synthesis Lectures on Communication Networks

Jean Walrand, Series Edito

and Vivek Borkar

# Provable Guarantees for Hybrid Systems

### Autonomous ground traffic systems

Challenge of provable safety of algorithms for large systems

- Hybrid systems
  - Interaction between the continuous world of Newtonian dynamics and logical world of computers?
- How to integrate decisions made in continuous and discrete domains?
- Traditional hybrid systems is for *finite number of states*
  - Many models undecidable or doubly exponential complecity
- We need theories for infinite numbers of dynamic systems, each with uncountable numbers of states
- Combining distributed and centralized systems
  - How to augment distributed optimization with coordination rules that guarantee system-wide safety and liveness?

# The architecture of the system and theoretical challenges



- How to go from finite time (MPC) to infinite time?
- How to handle dynamic oredrings?



20/24

#### **Abstraction layers**

EXPEDITED STATE UPDATE JOB PLACEMENT RULE CPU RESOURCE MANAGER

SERVICE

PROFILE

REGISTRY

SERVICE

SERVICE

NETWORK

MESSENGER

SERVICE

NETWORK

TIME

SERVICE

SCHEDULING SERVICE

INTERACTION FAULT TEMPORAL FAULT

DETECTOR SERVICEMANAGER SERVICE



#### Middleware manages the Components

(Baliga, Graham & K '04) (Graham, Baliga & K '09) (Kim & K '08) 21/24

0

#### Collision avoidance



(Schuetz, Robinson & K '05)22/24

#### Provably correct behavior

#### Theorem

- Directed graph model of road network
  - Each bin has in-degree 1 or out-degree 1
  - System has no occupied cycles initially
- Road width:  $W = R(1 \cos\beta(2\cos\alpha 1))$ 
  - Initial condition:  $(d,\theta): d + R(1 \cos \theta) < W$
  - Intersection angles  $\leq \gamma$ , and road lengths:  $L = (2\gamma R\underline{R})/(R \underline{R})$
  - Multiple cars with appropriate spacing
- Car control model: Kinematic model with turn radii  $\underline{R}$  and R
- Real time renewal tasks: HST scheduling with  $\sum C_i / D_i \le 1$
- Then cars can be operated
  - Without collisions (Safety) or
  - Gridlocks (Deadlock)





(Baliga & K ' 05)

# Thank you

