Control and Optimization of Smart Grid

Steven Low

Computing + Math Sciences Electrical Engineering

March 2015

Motivation & challenges

Optimal power flow

Power network will undergo similar <u>architectural</u> <u>transformation</u> that phone network went through in the last two decades

Industries will be destroyed & created AT&T, MCI, McCaw Cellular, Qualcom Google, Facebook, Twitter, Amazon, eBay, Netflix

Infrastructure will be reshaped

Centralized intelligence, vertically optimized Distributed intelligence, layered architecture

What will drive power network transformation ?

Proliferation of renewables

Electrification of transportation

Advances in power electronics

Deployment of sensing, control, comm

challenge

enablers

- 68 meters (residential)
- Sept 2012 (23 days)
- 240 volts
- +-5% min-228/max-252
- Hourly by meter #
- A few "high" meters
- Larger # of low meters

Source: Leon Roose, University of Hawaii Development & demo of smart grid inverters for high-penetration PV applications

Solar power over land: > 20x world energy demand

network of billions of <mark>active</mark> distributed energy resources (DERs)

DER: PV, wind tb, EV, storage, smart appliances

with the issues fast.

"We have from a growing number of eutomers looking for off grid solutions," add Chris Dellons, managing partner at KamuKit and Hawaii Energy-Connection. **Risk:** active DERs introduce rapid random fluctuations in supply, demand, power quality increasing risk of blackouts

Opportunity: active DERs enables realtime dynamic network-wide feedback control, improving robustness, security, efficiency

Caltech research: distributed control of networked DERs

- Foundational theory, practical algorithms, concrete applications
- Integrate engineering and economics
- Active collaboration with industry

Current control paradigm works well today

- Centralized, open-loop, human-in-loop, worst-case preventive
- Low uncertainty, few active assets to control
- Schedule supplies to match loads

Future needs

- Closing the loop, e.g. real-time DR, volt/var
- Fast computation to cope with rapid, random, large fluctuations in supply, demand, voltage, freq
- Simple algorithms to scale to large networks of active DER
- Market mechanisms to incentivize

Nonconvexity

Convex relaxations

Large scale

Distributed algorithms

Uncertainty

Risk-limiting approach

Multiple timescales

Decomposition

OPF is solved routinely for

- network control & optimization decisions
- market operations & pricing
- at timescales of mins, hours, days, ...

Non-convex and hard to solve

- Huge literature since 1962
- Common practice: DC power flow (LP)
- Also: Newton-Ralphson, interior point, ...

OPF underlies many applications

- Unit commitment, economic dispatch
- State estimation
- Contingency analysis
- Feeder reconfiguration, topology control
- Placement and sizing of capacitors, storage
- Volt/var control in distribution systems
- Demand response, load control
- Electric vehicle charging
- Market power analysis

Semidefinite relaxations of power flows

- Physical systems are nonconvex ...
- ... but have hidden convexity that should be exploited

Convexity is important for OPF

- Foundation of LMP, critical for efficient market theory
- Required to guarantee global optimality
- Required for real-time computation at scale

Distributed Control of Networked DER an GINDER GENI project

Caltech: Profs Chandy, Doyle, Low (PI); Drs. Bunn, Mallada; Students: Agarwal, Cai, Chen, Farivar, Gan, Guo, Matni, Peng, Ren, Tang, You, Zhao SCE: Auld, Castaneda, Clarke, Gooding, Montoya, Shah, Sherick (PI) Newport/Caltech: DeMartini (advisor)

Alumni: Bose (Cornell), Chen (Colorado), Collins (USC), Gayme (JHU), Lavaei (Columbia), Li (Harvard), Topcu (UPenn), Xu (SUTD)

EAN

- Increase(asset(u+liza+on(and(efficiency(
- Improve(power(quality(and(stability(
- Move(data:in:mo+on(analy+cs(to(edge(

Contact: Michael Enescu, co-founder CEO, enescu@alumni.caltech.edu

applications and T2M

theory

Convex relaxation of OPF: Theoretical foundation for semidefinite relaxations of power flow OPF: min tr (CW') s.t. $\hat{s}_i \leq tr(Y_i'W_*) \leq \tilde{s}_i$, $Y_i \leq |V_i|^2 \leq \tilde{v}_i$ SDP relaxation min tr (CW) s.t. $\hat{s}_i \leq tr(Y_i'W) \leq \tilde{s}_i$, $Y_i \leq |V_i|^2 \leq \tilde{v}_i$ s.t. $\hat{s}_i \leq tr(Y_i'W) \leq \tilde{s}_i$, $Y_i \leq W_i \leq \tilde{v}_i$ $W \geq 0$, mark W = 1 ignore this (only) nonconvex constr Exact relaxations: Sufficient

conditions for recovering global

optimum of OPF from relaxations

alcorithms

Relaxation algorithms:

- single-phase balanced, multiphase unbalanced
- centralized, distributed

models

simulations

Realistic simulations

- SCE feeder model, 2,000 buses
- DER: inverters, HVAC, pool pumps, EV
- Multiphase unbalanced radial

EAN analytics and optimization

EAN enabled control

DER placement, asset opt, analytics

DER co-optimization, frequency reg

Motivation & challenges

Optimal power flow (OPF)

- problem formulation
- semidefinite relaxations
- exact relaxation

admittance matrix:

$$Y_{ij} := \begin{cases} \sum_{k \sim i} y_{ik} & \text{if } i = j \\ -y_{ij} & \text{if } i \sim j \\ 0 & \text{else} \end{cases}$$

graph G: undirected

Y specifies topology of G and impedances z on lines

In terms of V:

$$S_j = \operatorname{tr}\left(Y_j^H V V^H\right)$$
 for all j $Y_j = Y^H e_j e_j^T$

Power flow problem: Given (Y, s) find V

isolated solutions

$$\begin{array}{lll} \min & \operatorname{tr} \left(CVV^{H} \right) & \begin{array}{c} \operatorname{gen \ cost,} \\ \operatorname{power \ loss} \end{array} \\ \text{over} & \left(V, s \right) \\ \text{subject to} & \underline{S}_{j} \leq S_{j} \leq \overline{S}_{j} & \underline{V}_{j} \leq |V_{j}| \leq \overline{V}_{j} \end{array}$$

$$\begin{array}{lll} \min & \operatorname{tr}\left(CVV^{H}\right) & \begin{array}{l} \operatorname{gen}\operatorname{cost}, \\ \operatorname{power}\operatorname{loss} \end{array} \\ \operatorname{over} & \left(V, s\right) \\ \operatorname{subject} \operatorname{to} & \underline{S}_{j} \leq S_{j} \leq \bar{S}_{j} & \underline{V}_{j} \leq |V_{j}| \leq \\ & S_{j} = \operatorname{tr}\left(Y_{j}^{H}VV^{H}\right) & \begin{array}{l} \operatorname{power}\operatorname{flow} \end{array} \end{array}$$

 V_i

equation

min tr
$$CVV^H$$

subject to $\underline{S}_j \leq \operatorname{tr}(Y_jVV^H) \leq \overline{S}_j \qquad \underline{V}_j \leq |V_j|^2 \leq \overline{V}_j$

nonconvex QCQP (quad constrained quad program)

min tr
$$CVV^H$$

subject to $\underline{S}_j \leq \text{tr}(Y_jVV^H) \leq \overline{S}_j$ $\underline{V}_j \leq |V_j|^2 \leq \overline{V}_j$
 \mathbf{V}

Approach

- 1. Three equivalent characterizations of ${\bf V}$
- 2. Each suggests a lift and relaxation

- What is the relation among different relaxations ?
- When will a relaxation be <u>exact</u>?

min tr
$$CVV^H$$

subject to $\underline{S}_j \leq \text{tr} (Y_jVV^H) \leq \overline{S}_j$ $\underline{V}_j \leq |V_j|^2 \leq \overline{V}_j$
quadratic in V
linear in W
subject to $\underline{S}_j \leq \text{tr} (Y_jW) \leq \overline{S}_j$ $\underline{V}_i \leq W_{ij} \leq \overline{V}_i$
 $W \geq 0$, rank $W = 1$ convex in W
except this constraint

W:= {W: linear constraints } $\bigcap \{W \ge 0 \text{ rank-1}\}$ idea: $W = VV^H$

only n+2m vars !

linear in
$$(W_{jj}, W_{jk})$$
 W_{jj} W_{jj}

$$\sum_{k:k\sim j} Y_{jk}^{H} \left(\left(V_{j} \right)^{2} - V_{j} V_{k}^{H} \right): \text{ only } \left| V_{j} \right|^{2} \text{ and } V_{j} V_{k}^{H}$$

corresponding to edges (j, k) in G!

min tr
$$CVV^H$$

subject to $\underline{S}_j \leq \operatorname{tr}(Y_jVV^H) \leq \overline{S}_j \quad \underline{V}_j \leq |V_j|^2 \leq \overline{V}_j$

only n+2m vars !

linear in
$$(W_{jj}, W_{jk})$$
 W_{jj} W_{jj}

$$\sum_{k:k\sim j} Y_{jk}^{H} \left(\left| V_{j} \right|^{2} - V_{j}V_{k}^{H} \right): \text{ only } \left| V_{j} \right|^{2} \text{ and } V_{j}V_{k}^{H}$$

partial matrix W_G defined on G $W_G := \{ [W_G]_{jj}, [W_G]_{jk} | j, jk \in G \}$ Kircchoff's laws depend <u>directly</u> only on W_G

$$\boldsymbol{W} = \begin{bmatrix} \boldsymbol{W}_{11} & \boldsymbol{W}_{12} & \boldsymbol{W}_{13} & \boldsymbol{W}_{14} & \boldsymbol{W}_{15} \\ \boldsymbol{W}_{21} & \boldsymbol{W}_{22} & \boldsymbol{W}_{23} & \boldsymbol{W}_{24} & \boldsymbol{W}_{25} \\ \boldsymbol{W}_{31} & \boldsymbol{W}_{32} & \boldsymbol{W}_{33} & \boldsymbol{W}_{34} & \boldsymbol{W}_{35} \\ \boldsymbol{W}_{41} & \boldsymbol{W}_{42} & \boldsymbol{W}_{43} & \boldsymbol{W}_{44} & \boldsymbol{W}_{45} \\ \boldsymbol{W}_{51} & \boldsymbol{W}_{52} & \boldsymbol{W}_{53} & \boldsymbol{W}_{54} & \boldsymbol{W}_{55} \end{bmatrix}$$

SDP solves for $W \in \mathbb{C}^{n^2}$ n^2 variables

$$W_{G} = \begin{bmatrix} W_{11} & W_{12} & W_{13} \\ W_{21} & W_{22} & & W_{25} \\ W_{31} & & W_{33} & W_{34} \\ & & & W_{43} & W_{44} & W_{45} \\ & & & & W_{52} & & W_{54} & W_{55} \end{bmatrix}$$

Want to solve for W_G n+2m variables

OPF
$$\mathbf{V} := \left\{ V \middle| \underline{S}_j \le \operatorname{tr} \left(Y_j V V^H \right) \le \overline{S}_j, \quad \underline{V}_j \le |V_j|^2 \le \overline{V}_j \right\}$$

SDP

$$\mathbf{W} := \left\{ W \middle| \underline{s}_j \le \operatorname{tr} \left(Y_j W \right) \le \overline{s}_j, \ \underline{v}_j \le W_{jj} \le \overline{v}_j \right\} \cap \left\{ W \ge 0, \operatorname{rank-1} \right\}$$

first idea:

$$\mathbf{W}_{G} := \left\{ W_{G} \middle| \underline{S}_{j} \le \operatorname{tr} \left(Y_{j} W_{G} \right) \le \overline{S}_{j}, \ \underline{V}_{j} \le [W_{G}]_{jj} \le \overline{V}_{j} \right\} \cap \left\{ W_{G} \ge 0, \operatorname{rank-1} \right\}$$

 W_G is equivalent to V when G is **chordal** Not equivalent otherwise ...

$$\mathbf{W}_{c(G)} := \left\{ W_{c(G)} : \underline{\text{linear}} \text{ constraints } \right\} \cap \left\{ W_{c(G)} \ge 0 \text{ rank-1} \right\}$$

idea: $W_{c(G)} = \left(VV^{H} \text{ on } C(G) \right)$

 $W:= \{W: \underline{\text{linear} \text{ constraints}} \} \cap \{W \ge 0 \text{ rank-1} \}$ idea: $W = VV^H$

$$\mathbf{W}_G := \left\{ W_G : \underline{\text{linear}} \text{ constraints} \right\}$$

idea:
$$W_G = (VV^H \text{ only on } G)$$

$$\begin{split} \mathbf{W}_{c(G)} &:= \left\{ W_{c(G)} : \underline{\text{linear}} \text{ constraints } \right\} \cap \left\{ W_{c(G)} \ge 0 \text{ rank-1} \right\} \\ &\text{idea: } W_{c(G)} = \left(VV^{H} \text{ on } \mathbf{C}(G) \right) \end{split}$$

$$W:= \{W: \underline{\text{linear} \text{ constraints}} \} \cap \{W \ge 0 \text{ rank-1} \}$$

idea: $W = VV^H$

Equivalent feasible sets

$$\mathbf{W}_{G} := \left\{ W_{G} : \underline{\text{linear constraints}} \right\} \cap \left\{ \begin{matrix} W(j,k) \ge 0 \text{ rank-1,} \\ \text{cycle cond on } \angle W_{jk} \end{matrix} \right\}$$

idea: $W_{G} = \left(VV^{H} \text{ only on } G \right)$
$$\mathbf{W}_{c(G)} := \left\{ W_{c(G)} : \underline{\text{linear constraints}} \right\} \cap \left\{ W_{c(G)} \ge 0 \text{ rank-1} \right\}$$

idea: $W_{c(G)} = \left(VV^{H} \text{ on } \alpha(G) \right)$

 $W:= \{W: \underline{\text{linear} \text{ constraints}} \} \cap \{W \ge 0 \text{ rank-1}\}$ idea: $W = VV^H$

Theorem:
$$V \equiv W \equiv W_{c(G)} \equiv W_{G}$$

Bose, Low, Chandy Allerton 2012 Bose, Low, Teeraratkul, Hassibi TAC2014

Theorem: $V \equiv W \equiv W_{c(G)} \equiv W_{G}$

Given $W_G \in W_G$ or $W_{c(G)} \in W_{c(G)}$ there is unique completion $W \in W$ and unique $V \in V$

Can minimize cost over any of these sets, but ...

Equivalent feasible sets

$$\mathbf{W}_{G} := \left\{ W_{G} : \underline{\text{linear constraints}} \right\} \cap \left\{ \begin{matrix} W(j,k) \ge 0 \text{ rank-1}, \\ \underline{\text{cycle cond on } \angle W_{jk}} \end{matrix} \right\}$$

idea: $W_{G} = \left(VV^{H} \text{ only on } G \right)$
$$\mathbf{W}_{c(G)} := \left\{ W_{c(G)} : \underline{\text{linear constraints}} \right\} \cap \left\{ W_{c(G)} \ge 0 \text{ rank-1} \right\}$$

idea: $W_{c(G)} = \left(VV^{H} \text{ on } \alpha(G) \right)$

$$W:= \{W: \underline{\text{linear constraints}} \} \cap \{W \ge 0 \text{ rank-1} \}$$

idea: $W = VV^H$

<u>Theorem</u>

- Radial G : $\mathbf{V} \subseteq \mathbf{W}^+ \cong \mathbf{W}_{c(G)}^+ \cong \mathbf{W}_G^+$
- Mesh G: $\mathbf{V} \subseteq \mathbf{W}^+ \cong \mathbf{W}_{c(G)}^+ \subseteq \mathbf{W}_G^+$

Bose, Low, Chandy Allerton 2012 Bose, Low, Teeraratkul, Hassibi TAC2014

Theorem

- Radial G : $\mathbf{V} \subseteq \mathbf{W}^+ \cong \mathbf{W}^+_{c(G)} \cong \mathbf{W}^+_G$
- Mesh G : $\mathbf{V} \subseteq \mathbf{W}^+ \cong \mathbf{W}^+_{c(G)} \subseteq \mathbf{W}^+_G$

For radial networks: always solve SOCP !

OPF

$\min_{V} C(V) \text{ subject to } V \in \mathbf{V}$

OPF-sdp:

 $\min_{W} C(W_G) \quad \text{subject to} \quad W \in \mathbb{W}^+$ **OPF-ch:**

 $\min_{W_{c(G)}} C(W_G) \quad \text{ subject to } \quad W_{c(G)} \in \mathbb{W}_{c(G)}^+$

OPF-socp:

 $\min_{W_G} C(W_G) \quad \text{ subject to } W_G \in \mathbb{W}_G^+$

SOCP more efficient than SDP

Relaxations are exact in all cases

- IEEE networks: IEEE 13, 34, 37, 123 buses (0% DG)
- SCE networks 47 buses (57% PV), 56 buses (130% PV)
- Single phase; SOCP using BFM
- Matlab 7.9.0.529 (64-bit) with CVX 1.21 on Mac OS X 10.7.5 with 2.66GHz Intel Core 2 Due CPU and 4GB 1067MHz DDR3 memory

