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Motivation & challenges 

Optimal power flow



Watershed moment

Bell: telephone

1876

Tesla: multi-phase AC

1888 Both started as natural monopolies 
Both provided a single commodity 
Both grew rapidly through two WWs 1980-90s

1980-90s

Deregulation 
started

Deregulation 
started

Power network will undergo similar architectural  
transformation that phone network went through 
in the last two decades 

IoT?

1969: 
DARPAnet

Convergence 
to Internet



Watershed moment

Industries will be destroyed & created 
AT&T, MCI, McCaw Cellular, Qualcom 
Google, Facebook, Twitter, Amazon, eBay, Netflix 

Infrastructure will be reshaped 
Centralized intelligence, vertically optimized 
Distributed intelligence, layered architecture

What will drive power network transformation ?



Advances in power electronics 

Deployment of sensing, control, comm 

Four drivers

Proliferation of renewables 

Electrification of transportation ch
al

le
ng

es
en

ab
le

rs



Source: Leon Roose, University of Hawaii 
Development & demo of smart grid inverters for high-penetration PV applications

Voltage violations are quite frequent



network of  
billions of active distributed 

energy resources (DERs)

DER: PV, wind tb, EV, storage, smart appliances

Solar power over land:  
> 20x world energy demand



Source: Leon Roose, University of Hawaii 
Development & demo of smart grid inverters for high-penetration PV applications

“Energiewende”



Risk: active DERs introduce rapid random 
fluctuations in supply, demand, power quality 
increasing risk of blackouts

Opportunity: active DERs enables realtime 
dynamic network-wide feedback control, 
improving robustness, security, efficiency

Caltech research: distributed control of networked DERs  

• Foundational  theory, practical algorithms, concrete  
    applications 
• Integrate engineering and economics 
• Active collaboration with industry



Active DERs: implications
Current control paradigm works well today 

■ Centralized, open-loop, human-in-loop, worst-case 
preventive 

■ Low uncertainty, few active assets to control 
■ Schedule supplies to match loads 

Future needs 
■ Closing the loop, e.g. real-time DR, volt/var 
■ Fast computation to cope with rapid, random, large 

fluctuations in supply, demand, voltage, freq 
■ Simple algorithms to scale to large networks of 

active DER 
■ Market mechanisms to incentivize 



Key challenges
Nonconvexity 

■ Convex relaxations 

Large scale 
■ Distributed algorithms 

Uncertainty 
■ Risk-limiting approach 

Multiple timescales 
■ Decomposition



Nonconvexity

Ian Hiskens, Michigan



Optimal power flow (OPF)

OPF is solved routinely for 
■ network control & optimization decisions 
■ market operations & pricing 
■ at timescales of mins, hours, days, … 

Non-convex and hard to solve 
■ Huge literature since 1962 
■ Common practice: DC power flow (LP) 
■ Also: Newton-Ralphson, interior point, …



Optimal power flow (OPF)

OPF underlies many applications 
■ Unit commitment, economic dispatch 
■ State estimation 
■ Contingency analysis 
■ Feeder reconfiguration, topology control 
■ Placement and sizing of capacitors, storage 
■ Volt/var control in distribution systems 
■ Demand response, load control 
■ Electric vehicle charging  
■ Market power analysis 
■ …



Nonconveity of OPF

Semidefinite relaxations of power flows 
■ Physical systems are nonconvex … 
■ … but have hidden convexity that should be exploited 

Convexity is important for OPF 
■ Foundation of LMP, critical for efficient market theory 
■ Required to guarantee global optimality 
■ Required for real-time computation at scale





Outline

Motivation & challenges 

Optimal power flow (OPF) 
■ problem formulation 
■ semidefinite relaxations 
■ exact relaxation



Bus injection model

i j k
zij = yij

−1

admittance matrix: 

Yij :=

yik
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graph G: undirected 

Y specifies topology of G and 
impedances z on lines



Yj =  YHejejT

Bus injection model

Power flow problem: 
Given            find Y,s( ) V V

In terms of    :V

sj =  tr YjHVVH( )         for all  j

isolated solutions



min              tr CVVH( )
over             V,s( )
subject to     sj   ≤   sj  ≤   sj             V j  ≤  |Vj |  ≤   V j

                    sj  =  tr YjHVVH( ) power flow equation

OPF: bus injection model

gen cost, 
power loss



power flow equation

OPF: bus injection model

min              tr CVVH( )
over             V,s( )
subject to     sj   ≤   sj  ≤   sj             V j  ≤  |Vj |  ≤   V j

                    sj  =  tr YjHVVH( )

gen cost, 
power loss



min            tr CVVH

subject to   sj   ≤   tr YjVVH( ) ≤   sj         vj  ≤  |Vj |2  ≤   vj
  

nonconvex QCQP 
(quad constrained quad program)

OPF: bus injection model



Basic idea

V

Approach 
1. Three equivalent characterizations of V  
2. Each suggests a lift and relaxation

• What is the relation among different relaxations ? 
• When will a relaxation be exact ?

min            tr CVVH

subject to   sj   ≤   tr YjVVH( ) ≤   sj         vj  ≤  |Vj |2  ≤   vj
  

V



min            tr CW

subject to   sj ≤ tr YjW( )≤ sj         vi ≤Wii ≤ vi
                  W ≥ 0,   rank W =1

Equivalent problem: 

Feasible set & SDP

convex in W 
except this constraint

quadratic in V 
linear in W 

min            tr CVVH

subject to   sj   ≤   tr YjVVH( ) ≤   sj         vj  ≤  |Vj |2  ≤   vj
  



Equivalent feasible sets

QCQP: n variables 

V:= V: quadratic constraints  { }

W+

V

W

idea:  W =VVH

SDP: n2 vars !



Feasible set

yjkH
k:k~ j
∑ Vj

2
−VjVkH( ) :  only Vj

2
 and VjVkH  

corresponding to edges ( j,k) in G! 

Wjj Wjk
linear in                Wjj ,Wjk( )

only n+2m vars !

V

min            tr CVVH

subject to   sj   ≤   tr YjVVH( ) ≤   sj         vj  ≤  |Vj |2  ≤   vj
  



yjkH
k:k~ j
∑ Vj

2
−VjVkH( ) :  only Vj

2
 and VjVkH  

corresponding to edges ( j,k) in G! 

Feasible set

Wjj Wjk
linear in                Wjj ,Wjk( )

only n+2m vars !

partial matrix WG  defined on G
WG := [WG ] jj ,[WG] jk j, jk∈G{ }

Kircchoff’s laws depend directly only on WG 



Wc(G) Wc(G)

c(G) c(G)G

Example

W =

W11   W12   W13   W14   W15

W21   W22   W23   W24   W25

W31   W32   W33   W34   W35

W41   W42   W43   W44   W45

W51   W52   W53   W54   W55
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SDP solves for W ∈Cn2

n2 variables

Want to solve for WG
n+2m variables

WG =

W11   W12   W13     
W21   W22                   W25

W31           W33   W34   
                W43   W44   W45

        W52           W54   W55
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Feasible sets

OPF

W := W sj ≤ tr YjW( )≤ sj ,  vj ≤Wjj ≤ vj{ }∩ W ≥ 0, rank-1{ }
SDP

WG := WG sj ≤ tr YjWG( )≤ sj ,  vj ≤ [WG] jj ≤ vj{ }∩ WG ≥ 0, rank-1{ }

WG is equivalent to V when G is chordal  
Not equivalent otherwise … 

first idea:

V := V sj ≤ tr YjVVH( )≤ sj ,    vj  ≤|Vj |2≤ vj{ }



Equivalent feasible sets 

idea:  W =VVH

idea:  Wc(G) = VVH  on c(G)( )



Equivalent feasible sets 

idea:  W =VVH

idea:  Wc(G) = VVH  on c(G)( )

idea:  WG = VVH  only on G( )



Equivalent feasible sets 

idea:  W =VVH

idea:  Wc(G) = VVH  on c(G)( )

idea:  WG = VVH  only on G( )



Equivalent feasible sets

V W Wc(G) WG

Bose, Low, Chandy Allerton 2012 
Bose, Low, Teeraratkul, Hassibi TAC2014

Theorem: V ≡W ≡Wc(G) ≡WG



Equivalent feasible sets

V W Wc(G) WG

Theorem: V ≡W ≡Wc(G) ≡WG

Given                                                  there is 
unique completion                and unique 

WG ∈WG   or  Wc(G) ∈Wc(G)

W ∈W V ∈ V

Can minimize cost over any of these sets, but …



Equivalent feasible sets 

idea:  W =VVH

idea:  Wc(G) = VVH  on c(G)( )

idea:  WG = VVH  only on G( )



W+ Wc(G)
+

Relaxations

WG
+

V W Wc(G) WG

Theorem 
■ Radial G :  
■ Mesh G : 

V ⊆W+ ≅Wc(G)
+ ≅WG

+

V ⊆W+ ≅Wc(G)
+ ⊆WG

+

Bose, Low, Chandy Allerton 2012 
Bose, Low, Teeraratkul, Hassibi TAC2014



W+ Wc(G)
+

Relaxations

WG
+

V W Wc(G) WG

Theorem 
■ Radial G :  
■ Mesh G : 

V ⊆W+ ≅Wc(G)
+ ≅WG

+

V ⊆W+ ≅Wc(G)
+ ⊆WG

+

For radial networks: always solve SOCP !



Recap: semidef relaxations
OPF
min
V

  C(V)   subject to  V ∈ V

G



SOCP more efficient than SDP

Relaxations are exact in all cases 
• IEEE networks: IEEE 13, 34, 37, 123 buses (0% DG) 
• SCE networks 47 buses (57% PV), 56 buses (130% PV) 
• Single phase; SOCP using BFM 
• Matlab 7.9.0.529 (64-bit) with CVX 1.21 on Mac OS X 10.7.5 with 2.66GHz Intel Core 2 

Due CPU and 4GB 1067MHz DDR3 memory 



exactness

OPF: extensions

distributed 
OPF

Kim, Baldick 1997 
Dall’Anese et al 2012 
Lam et al 2012 
Kraning et al 2013 
Devane, Lestas 2013 
Sun et al 2013 
Li et al 2013 
Peng, Low 2014

moment/SoS, 
based 

relaxation
Molzahn, Hiskens 2014 
Josz et al 2014 
Ghaddar et al 2014

multiphase 
unbalanced

Dall’Anese et al 2012 
Gan, Low 2014

semidefinite 
relaxations

applications

B&B, 
rank min, 

QC relaxation, 

Phan 2012 
Gopalakrishnan 2012 
Louca et al 2013 
Hijazi et al 2013

ext refs in Low 
TCNS 2014 

Louca et al 2014


