

IOT and Smart cities

Prof. Dr. Dr. h.c. Radu Popescu-Zeletin TU-Berlin /Fraunhofer Fokus /International Institute for Innovation Aysen

Joseph von Fraunhofer (1787 - 1826)

Scientist Discovery of the "Fraunhofer-Lines" in the solar spectrum

Innovator New tooling methods for lenses

Entrepreneur Director and associate of a glass factory

Fraunhofer FOKUS

CYBER PHYSICAL SYSTEMS /IOT/ Industrial internet/INDUSTRIE4.0/ 5G systems etc etc etc

From CIM to Cyber physical Sytems- a look behind

- 1973 Josef Harrington introduced CIM computer integrated manufacturing)
 - CIM is the integration of total manufacturing enterprise by using integrated systems and data communication coupled with new managerial philosophies that improve organizational and personnel efficiency (Wikipedia)
 - Islands, physical separation closed systems (even in the enterprise, no communication with the outside world)
 - Limited attack potential
 - Limited potential attackers (only from inside)
- Cyber physical Systems are networks of ITC subsystems with mechanical and electronical components over a data communication infrastructure like Internet (Wikipedia)
 - Interconnected systems open systems
 - End systems the embedded systems
 - Geographical non limited attack potential and nr of attackers

Cyber-physical Systems

The openness and complexity of a system defines the dimension of the attack space

- CP Systems Security a NP complex problem
- Security for CP systems redefined :
 - Security against attackers
 - Safety of the controlled systems
 - Intellectual Property
- There is no Secure System; we can improve but we never achieve a complete secure system (fata morgana effect)
- It is better to learn how to live in an insecure cyber space rather than hope that technology will provide secure systems.
- we need Security "Gebrauchanweisung" for products and services we are using and integrate.

Cyber physical Systems

- Security by design
 - Dream or reality?
 - For CP systems secured by designed Internet has to be redefined
 - CP systems require a NP complex security framework
 - Security (technological, governence, laws, etc) independent of countries borders and legislations.
- What should be done
 - Identity ,identity, identity of persons, of objects, of services of everything
 - Identity the bridge between real world and cyberspace
 - Certification of everything in the communication space of the CP systems
 - End to end authentication in order to provide trust and responsability
 - Different levels of security needed different technologies
 - Provide Security Gebrauchanweisung und learn to evaluate the RISC of your application in a certain system (consider physical separation)

The 21st Century's Challenge Growth of cities and sustainable development

 In 2050, more than 6.3 billion people will be living in urban environments – nearly twice as much as today

Growth of urban population until 2030 (UN 2010)

World Urbanization Prospects, the 2009 Revision

United Nations, Department of Economic and Social Affairs, Population Division

Urban and rural population by development regions

Less developed regions: Urban Area

Less developed regions: Rural Areas
More developed regions: Urban Areas

More developed regions: Rural Areas

4.000

4.500

4,00

2,50

1.00

(in mill.)

Urban Agglomerations in 2009 (proportion urban of the world: 50.1%)

60% 55% 50% Urban population 50% 45% 1950 2009 2050 40% 35% 30% 25% 204 20% 15% 15% 10% 5% Ablea Asia Europe Latin America, Northern America Oceania Caribbean

Distribution of the world urban and rural population by major area

Total population by city size class (in millions)

0 0 0

What makes a city smart(er)?

Environment	Energy	Administration
The city produces nearly zero CO ₂ emissions.	The city is highly energy efficient.	The city owns a transpa- rent and collaborative administration.
Quality of Life	A Smart City	and many
The city offers best quality of life for every citizen.	subsystems and by this all of its potentials	more
Economy	Climate Change	Mobility
The city is attractive for establishing new business models.	The city responds to the Auswirkungen climate change's impacts .	The city is a field for continious eMobility .

End Systems

Web 3.0: Everything goes connected

Produce and consume DATA

Data, Data, Data... 2.5 trillion! Day by Day

WHERE TO START?

- ICT Architecture: Data Centric
- Data sources: government, citizens utilities, traffic data, open data
- Big Data (2020 : 30 Zettabytes)
- Analytics
- Use Cases
- Legislation
- Business models

Fraunhofer FOKUS

Data as Power of Tomorrow's Cities' Topics

Tomorrow's City is steered by Data

FOKUS

ICT in Smart Cities Backbone for Smart Cities

Open Government Data

Data Sources for Tomorrow's City

Sensor data, un-/poly-/structured data, open / private data , high volume data

Data, Data, Data! Smart City Cloud is the ICT Fundament for the Smart City of Berlin

- Data and services are the key to control and optimization of urban systems and processes
- Berlin needs an infrastructure to provide and link urban data and electronic services

Participation and Open Innovation

Berlin Smart City Cloud is the Enabler of new Business Models in Order to Involve the Citizens

- The *partial* opening of Smart City Cloud's data and services is the basis for numerous new business models and development of innovative city apps
- Informed citizens actively take part in decision processes and support public authority's duties

DIE SWELT 05. Juni 2013

Warum Berlin das nächste Silicon Valley wird

Die deutsche Hauptstadt hat sich in den letzten Jahren zu einem Epizentrum der Technologie-Start-ups entwickelt. Investor Matt Cohler kennt fünf Gründe, die für Berlin sprechen.

ennt fünf Gründe, die für Berlin sprechen.

The Berlin Smart City Cloud takes form First parts are already implemented...

...in cooperation with numerous Berliner based companies:

FOKUS Contact:

R.Popescu-Zeletin

Fraunhofer Institute for Open Communication Systems FOKUS Kaiserin-Augusta-Allee 31 10589 Berlin, Germany

Tel +49 (30) 34 63 - 7000 Fax +49 (30) 34 63 - 8000

info@fokus.fraunhofer.de www.fokus.fraunhofer.de

INTERNATIONAL INSTITUTE for **INNOVATION Aysen Chile**

www.iiiap.org

Univ.-Prof. Dr.-Ing. habil. Prof. e.h. Dr. h.c. Tel +49 (30) 34 63 – 7206 radu.popescu-zeletin@fokus.fraunhofer.de

About the Fraunhofer Gesellschaft

The Fraunhofer Gesellschaft is Europe's largest organization for applied research.

- Fraunhofer develops products and processes through to technical or commercial maturity
- Individual solutions are elaborated in direct contact with the customers
- The Fraunhofer Gesellschaft maintains
 - 60 self-contained Fraunhofer Institutes throughout Germany
 - with a staff of 21,000 scientists and engineers
 - 2.0 billion Euro annual budget
- 70% of funding are raised through innovative development projects, license fees and contract research
- Labs and representative offices all over the world

SMARTER ?

By smarter, we mean the world is becoming:

Open ICT Architecture for Smart Cities

A Multi-Layered Approach

- City application platform for advanced apps by city stakeholders and communities
- Urban data platform of secured, distributed, and interconnected data for managed information access
- Various types of fixed, mobile, adhoc, sensor networks connecting devices and sensors
- Seamless and unified access to raw, aggregated and consumer data and meta-data for fixed and mobile services
- Efficient engineering (design, development and testing) of validated secure, interoperable, and robust reliable systems

Our Smart Cities Vision Information is Key

City as service provider

for citizens, enterprises, institutions, and tourists

Smartness via

Always Best Informed an Inter-Connected Urban A (Machines, Systems and People)

Information at any need, at place, at any device, at any at any preference

Es gibt nichts Gutes, außer man tut es!

Erich Kästner

Action Fields: Smart Data for Tomorrow's City

Architecturs and Infrastructurs for Smart Data Syndication and Analytics for Smart Data

Standardization of selected aspects of Smart Data in order to enable interoperable solutions

Realization of examplary solutions of the mentioned action fields

Assessment and Improvement of Data Quality

Classification of Action Field in Smart Big Data Reference Model

Knowledge Processing

- Prescriptive analytics
- Visualization

Information

Provisioning

- Predictive analytics

Data Analysis

- Modelling, semantic analysis, sentiment analysis
- Statistics, data stream analysis

Data Integration

- Syndication, integration, extraction
- Formatting

Data Preparation

- Metadata, description, tagging, annotation
- Filtering, clearing, classification, anonymization

Data Gathering

Screening

- Localization
- Ethics legal conformity

Big Picture of Smart Data

