Cognitive Radio: From Promise to Reality

José F. de Rezende rezende@land.ufrj.br

LAND – Laboratory for Modelling, Analysis and Development of Networks and Computer Systems

Universidade Federal do Rio de Janeiro (UFRJ)

Cognitive Radio: Motivation

Fixed Spectrum Assignment

Spectrum Utilization

Cognitive Radio: DSA Enabler

 J. Mitola III and G. Q. Maguire, Jr., "Cognitive Radio: Making Software Radios More Personal," *IEEE Personal Commun.*, vol. 6, no. 4, Aug. 1999, pp. 13–18.

What is a Cognitive Radio (CR)?

- capability to use or share the spectrum in an opportunistic and intelligent manner
 - advantages:
 - allows for real-time spectrum management
 - significantly increases spectrum efficiency
- CR should be able to change (by software) its transmitter parameters based on interaction with the environment in which it operates
 - it senses the RF environment and modifies frequency, bandwidth, power or modulation

Cognitive Cycle

- determine which portions of the spectrum is available and detect the presence of licensed users (Spectrum Sensing)
- select the best available channel (Spectrum Decision)
- coordinate access to this channel with other users (Spectrum Sharing)
- vacate the channel when a licensed user is detected (Spectrum Mobility)

CR Evolution

sensing based

COPPE

UFR]

- regulator guidelines recommend a high sensitivity (-120 or -114 dBm)
 - increases the costs of the equipment
- several blind and signal specific feature-based techniques
 - energy detector, spectral correlation, time-domain cyclostationarity, eigenvalue decomposition, pilot detection, high order statistics analysis
- geo-location based (White Space DB WSDB)
 - the database determines the free channels for operation
 - cheaper cognitive radios (no sensing)
 - waste of temporal opportunities
 - more appropriate to TV bands (TVWS)
 - challenges on the database management, maintenance and information exchange
- hybrid: sensing + geo-location
 - database-aided sensing or sensing-aided database

Existing WSDBs

Google Spectrum Database

Spectrum availability (as of February 24, 2014)

Spectrum Bridge

SPECTRUM®

My Account Contact Us

White Space Plus Log Off Welcome ifrezende@mmail.co

Back to Device List

Map

Existing WSDBs

WSDB@UFRJ General Architecture

Base de Dados dos Canais Disponíveis

Selecione um dos modelos de propagação disponíveis abaixo para observar o espectro de frequência do estado do Rio de Janeiro. Caso queira consultar em um ponto específico, basta arrastar o marcador para a posição desejada.

WSDB use cenarios

Rural Broadband

- 802.22 (Wi-FAR) and 802.11af
- IoT
 - Weightless, SigFox and 802.15.4m
- LTE femto cells
 - in the 3.5GHz radar band

Some Research Activities on CRs

sensing

- channel sensing order problem
- proactive sensing for spectrum handoff

DSA in the radar bands

Channel Sensing Order

single radio and multiple channels with temporal opportunities

- when channels have varying capacity and occupation
 - sensing order has a great impact in the performance

Channel Sensing Order

- intuitive channel sequences
 - decreasing order of capacity/occupation
- the theory of optimal stopping can provide the best sequence to be followed
 - but requires a priori knowledge of the moments of the random variables that characterize the channels
 - and presents a high computational complexity
- our proposal uses a reinforcement learning (RL) machine
 - does not require any a priori knowledge about the channels
 - with a proper modeling we can
 - reduce the state space of the problem (Q-table)
 - achieve a performance close to the optimal

On-going Work on Channel Sensing Order

RL convergence problem

- exploration x exploitation tradeoff
- multiple users
 - independent versus cooperative agent learners
 - spectrum utilization efficiency and fairness

Proactive Sensing for Spectrum Handoff

spectrum handoff

UFR₁

- in order to free the channel after PU arrival
 - i.e. reactive handoff
- SU needs to sense other channels
 - sensing order matters
- however, by doing proactive sensing on the remaining N-1 channels, we can
 - estimate PU activity (i.e. two-state continuous-time Markov Chain)
 - gather channel state information, and then
 - determine a handoff sensing sequence that optimizes some criteria

Handoff Sensing Sequence

the order in which channels are sensed matters

- e.g. probability of being idle (P_{IDLE}): lesser time to handoff
- e.g. expected transmission time (t_E): longer time before handing off again
- proposal
 - expected interference time (t_I): lesser interference to the PU
 - considering the misdetection probability (P_{MD})

Assessed Criteria

Name	Criterion	Reference
kim	P_{IDLE}	[Kim and Shin 2008]
duan	$P_{IDLE} \cdot t_E \cdot T_d(t_E)$	[Duan and Li 2011]
lee	t_E	[Lee and Akyildiz 2011]
proposed	$\frac{P_{IDLE} \cdot t_E}{t_I}$	[CrownCom 2012]

Proactive Sensing Interval Variation

channel switching delay = 0.15 s

P_{MD} = 0.01

P_{MD} Variation

channel switching delay = 0.15 s proactive sensing interval = 50 s

COPPE UFRJ

Proactive Sensing Interval Variation

• channel switching delay = 0.15 s

P_{MD} = 0.01

On-going Work on Spectrum Handoff

proactive handoff

free the channel before the PU arrival

- eliminate unpredictable channels
 - use of entropy

use spectrum measurement traces

huge space of opportunities

The Aggregate Interference Problem

- caused by multiple SUs
- static threshold
 - multiple interference is not considered
- proposal: a cooperative method between PU and SUs
 - combination of DFS-T: temporal & spatial opportunities
 - an additional mechanism to prevent Aggregate Interference (AI)
 - dynamic threshold which evolves with AI
 - cooperation between PU and SUs
 - PU measures the amount of interference and broadcasts new P_{thr}
 - SU updates *P*_{thr} information

References

- [IEEE LCN 11] Mendes, A. C., Augusto, C. H., Silva, M. W. R., Guedes, R. M., and de Rezende, J. F. – "Channel Sensing Order for Cognitive Radio Networks Using Reinforcement Learning", in IEEE LCN'2011, Bonn, Germany, October 2011.
- [CrownCom 12] Coutinho, P. S., Silva, M. W. R., and de Rezende, J. F. – "Detection Error Aware Spectrum Handoff Mechanism for Cognitive Radios", in CrownCom'2012, Stockholm, Sweden, June 2012.
- [ITS14] de Souza Lima, C., Paisana, F., de Rezende, J. F., and DaSilva, L. A. – "A cooperative approach for dynamic spectrum access in radar bands", in ITS'2014, São Paulo, SP, Brazil, July 2014.

Thank You.

José F. de Rezende rezende@land.ufrj.br

LAND – Laboratory for Modelling, Analysis and Development of Networks and Computer Systems

Universidade Federal do Rio de Janeiro (UFRJ)