

Population Size and Density Estimation

Farid Movahedi Naini (EPFL), Olivier Dousse (Nokia), Patrick Thiran (EPFL), Martin Vetterli (EPFL).

> CH-1015 Lausanne Patrick.Thiran@epfl.ch http://lca.epfl.ch

A Classical Problem

□ Estimating Life's Diversity: How many species are there?

□ Species/population estimation

- Biology: Estimating animal population size,
- Epidemiology: Estimating the number of drug users in a city,
- Information Theory: Alphabet size estimation.

Population Estimation: An Old Problem

German Tank Problem: Population *N* of captured tanks.

□ Minimum variance unbiased estimator:

 $\hat{N} = \max(serial_nb)*(1+1/(sample_size))-1$

□ August 1942 (wikipedia)

- Intelligence: 1550
- MVUE: 327
- Groundtruth: 342.

Population Estimation Using Mobile Phones

- Mobile network = distributed inference tool [NainiDTV14]
 - Mobile phones with Bluetooth and GPS.
- Broadcasts unique identifier in visible mode
 - Nominal range ~10 m.

Paléo Music Festival

Major European music festival

- July 20-25 2010, Nyon, Switzerland.
- Attracts 40000 attendees per day.
- An open-air environment (area 120000 m²).

The Setup

□ 10 arbitrary participants are sent to the festival:

- Typical movement pattern of a participant.
- Each carrying a Nokia N95 mobile phone.
- □ Three mobile phones installed at the entrances.
- □ All phones collect Bluetooth MAC addresses every 80 s.
- Data collected for one day of the festival (13 h).

Coverage

- □ 40536 attendees.
- \Box *M* = 10 agents
- \Box *N* = 3326 attendees with visible BT (8.2%).

Number of Individuals by each agent Sojourn time of each agent

Coverage

- □ 40536 attendees.
- \Box *N* = 3326 attendees with visible BT (8.2%).
- **\Box** Number of devices detected by mobile agents: *n* = 2637.
- □ 79.3% coverage (of visible BT) with only 10 agents.

Curve Fitting

□ 2637 devices are detected ($N \ge 2637$): 20.7% undershoot.

□ Actually, we have more fine-grain information:

- Bluetooth traces of the M = 10 agents
- Number k_{ij} of detections of individual *i* by agent *j*.

□ Simple extrapolation = 2744 : 17.5% undershoot.

• Averaged over subsets of m agents for m = 1, 2, ..., 10.

Use repetitions (capture-recapture)

□ *N* distinct individuals,

 $\Box R_n$ = number of repeated individuals in sample of size *n*,

- $\square n_k = \min\{n : R_n = r\} \text{ (Here } n_1 = 4, n_2 = 5, n_3 = 7),$
- $\Box N(n_k,k) \sim n_k^2 / (2r)$. [OrlitskySV, ISIT 2007]
- □ Assumes uniform i.i.d. sampling of the individuals. □ Here leads to $\hat{N} = 2676$
- □ Non uniform sampling of the individuals (N = 3326).

Pattern Maximum Likelihood (PML)

Used for alphabet-size estimation [Acharya, Orlitsky, Pan et al]

- □ One source generating an i.i.d. sequence of symbols,
- \Box Replace each symbol by its order of appearance \rightarrow Pattern
- **Example:** 12311421
- □ Captures structure and frequencies, ignore symbols.
- Identify the distribution of the source that maximizes the probability of the observed pattern.

Pattern Maximum Likelihood (PML)

- Sequence maximum likelihood: which distribution maximizes the probability of the observed sequence?
 - Sequence of *n* distinct symbols.
 - Answer: Empirical frequency; alphabet size: *n*, each symbol probability 1/n.
- Pattern maximum likelihood: which distribution maximizes the probability of the observed pattern?
 - Pattern: 123...n
 - Answer: large (>> n).
 - Better model for estimating large alphabets from a small sample size.

Pattern maximum likelihood

- □ Obtaining the PML computationally expensive.
- \Box Exact solution known for all patterns up to length n = 7.
- Expectation maximization (EM) algorithm for longer patterns, from [DhulipalaOS2003].
- □ For our experiment:
 - Input: number of contacts of each individual aggregated over all 10 agents (length: n = 11318).
 - Output: $\hat{N} = 3129$

Opportunistic Mobile Sampling

- \Box *M* agents > 1 source.
- □ Non-uniform random sampling.
- **Time varying sampling.**

Opportunistic Mobile Sampling

- \Box *M* agents > 1 source.
- □ Non-uniform random sampling.
- □ Time varying sampling.

Parametric Model

Gamma-Poisson model:

• Contacts are Poisson $k_{ij} \sim \text{Poisson}(\lambda_i)$

$$P(k_{ij} = k) = \frac{\lambda_i^k}{k!} \exp(-\lambda_i k)$$

• Gamma prior for the detection rate $\lambda_i \sim \Gamma(\alpha, \beta)$:

$$f_{\lambda_i}(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} \exp(-\beta\lambda)$$

Contact Times

Parametric Model

Gamma-Poisson model:

• Contacts are Poisson $k_{ij} \sim \text{Poisson}(\lambda_i)$

$$P(k_{ij} = k) = \frac{\lambda_i^k}{k!} \exp(-\lambda_i k)$$

• Gamma prior for the detection rate $\lambda_i \sim \Gamma(\alpha, \beta)$:

$$f_{\lambda_i}(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} \exp(-\beta\lambda)$$

Detection of individuals by agents are independent.

Parametric Model

 \Box Device with detection rate $\lambda \sim \Gamma(\alpha, \beta)$

• Probability that the individual be detected:

$$p_{det}^{(\lambda)} = 1 - \prod_{j=1}^{M} e^{-\lambda} = 1 - e^{-M\lambda}$$
$$p_{det}(\alpha, \beta) = \mathbb{E}_{\lambda} \left[p_{det}^{(\lambda)} \right] = 1 - \left(\frac{\beta}{\beta + M} \right)^{\alpha}$$

 Probability that individual i is detected k_{i1} times by agent 1, ..., k_{ij} times by agent j,..., k_{iM} times by agent M:

$$\begin{split} \mathsf{P}_{i}^{(\lambda)} &= \prod_{j=1}^{M} e^{-\lambda} \frac{\lambda^{k_{ij}}}{k_{ij}!} \\ \mathsf{P}_{i}(\alpha,\beta) &= \mathbb{E}_{\lambda} \left[\mathsf{P}_{i}^{(\lambda)} \right] = \frac{\Gamma(\alpha + \sum_{j=1}^{M} k_{ij}) \beta^{\alpha}}{\Gamma(\alpha)(\beta + M)^{\alpha + \sum_{j=1}^{M} k_{ij}}} \prod_{j=1}^{M} \frac{1}{k_{ij}!}, \end{split}$$

Likelihood Based Estimator

U We maximize the likelihood function of the observation:

$$L(N,\alpha,\beta) = \underbrace{\binom{N}{N-2637} \left(1 - p_{det}(\alpha,\beta)\right)^{N-2637}}_{L_1(N,\alpha,\beta)} \cdot \underbrace{\prod_{i=1}^{2637} \mathsf{P}_i}_{L_2(\alpha,\beta)}$$

 $\Box \ L_1(N,\alpha,\beta) : \text{the likelihood of the unobserved individuals}$ $\Box \ L_2(\alpha,\beta) : \text{the likelihood of the observed individuals}$ $L(N,\alpha,\beta) = \binom{N}{N-2633} \left(\frac{\beta}{\beta+M}\right)^{\alpha(N-2633)} \times \prod_{i=1}^{2633} \left\{\frac{\Gamma(\alpha+\sum_{j=1}^M k_{ij})\beta^{\alpha}}{\Gamma(\alpha)(\beta+M)^{\alpha+\sum_{j=1}^M k_{ij}}\prod_{j=1}^M k_{ij}!}\right\}$

 \Box We define the maximum likelihood estimators for (N, α, β) :

$$(\hat{N}, \hat{\alpha}, \hat{\beta}) = \underset{N, \alpha, \beta}{\operatorname{arg\,max}} \log L(N, \alpha, \beta)$$

Result

Result of the MLE:

\hat{N}	$(N-\widehat{N})/N$
3106	6.61%

- □ Large undershoot
 - Attendees have different arrival/departure times
 - Assumed to be i.i.d.

Overlap time between individual i and agent j's

Contact intensity time-dependent

□ Including arrival and departure times *at* and *dt* :

- Overlap time $t_i^j = \min(dt_i, dt_i) \max(at_i, at_i)$
- (at_i,dt_i) known; (at_i,dt_i) estimated joint distribution *f*.
- $k_{ij} \sim Poisson(\lambda_i \cdot t_i^j)$

□ The likelihood function has the same form:

$$L(N, \alpha, \beta) = \underbrace{\binom{N}{N-2637} (1 - p_{det}(\alpha, \beta))^{N-2637}}_{L_1(N, \alpha, \beta)} \cdot \underbrace{\prod_{i=1}^{2637} \mathsf{P}_i}_{L_2(\alpha, \beta)}$$
$$\mathsf{P}_i(\alpha, \beta) = \mathbb{E}_{f,\lambda} \left[\mathsf{P}_i^{(f,\lambda)}\right]$$
$$p_{det}(\alpha, \beta) = \mathbb{E}_{f,\lambda} \left[p_{det}^{(f,\lambda)}\right]$$

Result

Distribution f(at,dt) of arrival/ departure times is measured or approximated by Gaussian

Result of the MLE is:

Distribution of arrival/departures	\hat{N}	$(N-\widehat{N})/N$
Measured	3311	0.45%
Approximated	3275	1.53%

□ Very small error

- Gamma-Poisson model works well.
- Inputs are minimally sufficient statistics for our MLE.

Results (*N* **= 3326)**

□ We compare with two existing methods:

Method	\hat{N}	$(N-\widehat{N})/N$
Capture-recapture [LeeC1994]	3013	9.46%
Alphabet-size estimator [OrlitskySV2007]	2676	19.54%
PML [AcharyaOP09]	3129	5.95%
(at, dt) = maximal overlap (identical for all users i)	3106	6.61%
(<i>at, dt</i>) = measured	3311	0.45%
(at, dt) = Gaussian approximation	3275	1.53%

Population Density Estimation

□ Divide area in *K* locations $1 \le l \le K$ □ Poisson contacts per location *l*:

$$k_{ij}^{(l)} \sim \text{Poisson}(\lambda_i^{(l)} \cdot t_i^{j,(l)})$$

 $\begin{array}{l} \square \ k_{ij}^{(l)} = \text{number of times agent } j \text{ contacts individual } i \text{ in location } l \\ \square \ t_{i}^{j,(l)} = \text{overlap time between individual } i \text{ and agent } j \text{ in location } l \\ \square \ \pi(l) = \text{measures the density (popularity) of location I} \\ \lambda_{i}^{(l)} \sim \Gamma(\pi(l)\alpha,\beta) \qquad \qquad \sum_{k=1}^{K} \pi(l) - 1 \end{array}$

□ Independence:
$$k_{ij}^{(l)} \perp k_{i'j'}^{(l')}$$
 for $i \neq i'$, $j \neq j'$ and/or $l \neq l'$.

Likelihood Based Estimator

Full likelihood function

$$L(N,\alpha,\beta,\pi(1),\pi(2),\ldots,\pi(K)) = \binom{N}{N-2637} (1 - p_{dsc}(\alpha,\beta))^{N-2637} \cdot \prod_{i=1}^{2637} \mathsf{P}_i$$

□ Maximum likelihood estimator

$$\left(\widehat{N},\widehat{\alpha},\widehat{\beta},\widehat{\pi}(1),\widehat{\pi}(2),\ldots,\widehat{\pi}(K)\right) = \arg\max_{N,\alpha,\beta,\pi(1),\pi(2),\ldots,\pi(K)} \log L(N,\alpha,\beta,\pi(1),\pi(2),\ldots,\pi(K))$$

Application to Paleo Festival

Impact of Mobility on Density Estimation

- How do mobile agents compare against static agents (e.g., sensors)?
- □ Methodology:
 - Simpler model for analytical tractability with explicit agents' mobility
 - Can quantitatively analyze the effect of agents' mobility
 - Can derive optimal random movement strategy for agents
 - Only estimation of density (Population size *N* known)
 - Can compute Fisher Information matrix for continuous parameters
 - Can analyze asymptotic behavior of parameter.

Discrete-time Model

□ *N* known individuals, *M* agents moving between *K* locations

□ At each time-sample $1 \le t \le T$, each individual and each agent choose a location i.i.d. according to π and π_A , respectively.

 \Box Objective: Estimate π from agent's measurements.

Simulation Results (K = 20 locations)

□ Mobile vs static agents (N = 1) □ Mobile vs static agents (M = 1)

- Solid curve: mobile agents
- Dashed curve: static agents

Conclusion

Novel application that exploits the opportunistic contacts between mobile devices to infer population parameters

• Focus on population size and density.

□ The resulting estimate is surprisingly close to the ground truth

- Considering the small number of agents,
- But thanks to the large number of contacts.
- Exposure (overlap) time needs to be taken into account.
- Mobile agents outperform static agents for long observation intervals
 - Empirically verified for various sets of parameters.
 - Initial increase in the MSE theoretically shown for one particular scenario.

Acknowledgement

□ The authors thank:

- Stéphane Szilagyi, Pascal Viot (Paléo)
 - Help in cunducting the experiment at Paléo
- Julien Eberle (EPFL)
 - Help in programming the mobile phones
- Nokia Research Center
 - Research grant `Accidental Sampling'.